The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose
نویسندگان
چکیده
Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61), some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a metal-dependent oxidative mechanism that leads to generation of aldonic acids. The activity of this enzyme and its beneficial effect on the efficiency of classical cellulases are stimulated by the presence of electron donors. Experiments with reduced cellulose confirmed the oxidative nature of the reaction catalyzed by PcGH61D and indicated that the enzyme may be capable of penetrating into the substrate. Considering the abundance of GH61-encoding genes in fungi and genes encoding their functional bacterial homologues currently classified as carbohydrate binding modules family 33 (CBM33), this enzyme activity is likely to turn out as a major determinant of microbial biomass-degrading efficiency.
منابع مشابه
Transcript analysis of genes encoding a family 61 endoglucanase and a putative membrane-anchored family 9 glycosyl hydrolase from Phanerochaete chrysosporium.
Phanerochaete chrysosporium cellulase genes were cloned and characterized. The cel61A product was structurally similar to fungal endoglucanases of glycoside hydrolase family 61, whereas the cel9A product revealed similarities to Thermobifida fusca Cel9A (E4), an enzyme with both endo- and exocellulase characteristics. The fungal Cel9A is apparently a membrane-bound protein, which is very unusua...
متن کاملBiodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk
BACKGROUND Tobacco stalk is one kind of abundant crop residues in China. The high lignification of tobacco stalk increases its reusing cost and the existing of nicotine will cause serious pollution. The biodegradation of lignocellulosic biomass has been demonstrated to be an environmental and economical approach for the utilization of plant stalk. Meanwhile, many nicotine-degrading microorganis...
متن کاملCharacterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium.
The wood decay fungus Phanerochaete chrysosporium has served as a model system for the study of lignocellulose conversions, but aspects of its cellulolytic system remain uncertain. Here, we report identifying the gene that encodes the glycoside hydrolase (GH) family 45 endoglucanase (EG) from the fungus, cloning the cDNA, determining its heterologous expression in the methylotrophic yeast Pichi...
متن کاملBiosorption of Lead (II) and Zinc (II) ions by pre-treated biomass of phanerochaete chrysosporium
The biosorption of heavy metals can be an effective process for the removal of such metal ions from aqueous solutions. In this study, the adsorption properties of nonliving biomass of phanerochaete chrysosporium for Pb (II) and Zn (II) were investigated by the use of batch adsorption techniques. The effects of initial metal ion concentration, initial pH, biosorbent concentration, stirring speed...
متن کاملExtracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium.
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in ligno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011